A new four-stage approach based on normalized vegetation indices for detecting and mapping sugarcane hail damage using multispectral remotely sensed data
نویسندگان
چکیده
Hailstorms have increased in frequency and intensity over the past decade causing substantial losses agriculture. Since hailstorms often hit a wide area with no detectable pattern, relying on traditional field-based methods to assess crop damage is difficult. The aim of this study was develop test new four-stage normalized vegetation index approach for detecting severity hailstorm sugarcane plants large estate south eastern Zimbabwe. following six spectral indices were computed period before after event extent sugarcane: Green Chlorophyll Index (GCI); Normalized Difference Vegetation (NDVI); Senescent (NDSVI); Red Edge (RECI); Tillage (NDTI); Modified Soil Adjusted (MSAVI2). Then, differences each separately difference maps are reported as delta (Δ) indices. results show that within one week even two weeks hailstorm, ΔNDTI, ΔNDVI ΔRECI consistently able detect characterise damage. When used partial least squares-discriminant analysis (PLS-DA), ΔNDTI performed best mapping throughout estate. discriminate three different levels an overall accuracy 90% Kappa value 0.85. Combined these imply using multi-spectral datasets fortnight promising tool generating reliable information about by hailstorms. Such spatially explicit useful creating customised insurance packages sensitive incurred farmer.
منابع مشابه
Performance evaluation of vegetation indices using remotely sensed data
Vegetation is one of the most important components of the ecosystems. Knowledge about variations in vegetation species and community distribution patterns, alternations in vegetation phonological (growth) cycles, and modifications in plant physiology and morphology provide a valuable insight in to the climate, geologic and physiographic, characteristics of an area, so mapping vegetation cover i...
متن کاملDigital Processing of Remotely Sensed Multispectral Data
Although it is well recognized that photointerpretation of the Landsat imagery can provide adequate information for mapping broad categories of land cover at a reconnaissance level, it is also true that the Landsat data in digital format (CCT's) together with numerical (computer-aided) analysis techniques can provide a great deal more information at a higher level of mapping detail with mapping...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولMapping understory vegetation using phenological characteristics derived from remotely sensed data
a Center for Systems Integration and Sustainability, Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48823, USA b The Nature Conservancy, Williamsport Field Office, Williamsport, PA 17701, USA c State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China d China Conservation and...
متن کاملRangeland Condition Monitoring: A New Approach Using Cross-Fence Comparisons of Remotely Sensed Vegetation
A need exists in arid rangelands for effective monitoring of the impacts of grazing management on vegetation cover. Monitoring methods which utilize remotely-sensed imagery may have comprehensive spatial and temporal sampling, but do not necessarily control for spatial variation of natural variables, such as landsystem, vegetation type, soil type and rainfall. We use the inverse of the red band...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geocarto International
سال: 2023
ISSN: ['1010-6049', '1752-0762']
DOI: https://doi.org/10.1080/10106049.2023.2245788